(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
1024 → 1024_1(0)
1024_1(x) → if(lt(x, 10), x)
if(true, x) → double(1024_1(s(x)))
if(false, x) → s(0)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
10 → double(s(double(s(s(0)))))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
1024' → 1024_1(0')
1024_1(x) → if(lt(x, 10'), x)
if(true, x) → double(1024_1(s(x)))
if(false, x) → s(0')
lt(0', s(y)) → true
lt(x, 0') → false
lt(s(x), s(y)) → lt(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
10' → double(s(double(s(s(0')))))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
1024' → 1024_1(0')
1024_1(x) → if(lt(x, 10'), x)
if(true, x) → double(1024_1(s(x)))
if(false, x) → s(0')
lt(0', s(y)) → true
lt(x, 0') → false
lt(s(x), s(y)) → lt(x, y)
double(0') → 0'
double(s(x)) → s(s(double(x)))
10' → double(s(double(s(s(0')))))
Types:
1024' :: 0':s
1024_1 :: 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s
lt :: 0':s → 0':s → true:false
10' :: 0':s
true :: true:false
double :: 0':s → 0':s
s :: 0':s → 0':s
false :: true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
1024_1,
lt,
doubleThey will be analysed ascendingly in the following order:
lt < 1024_1
double < 1024_1
(6) Obligation:
Innermost TRS:
Rules:
1024' →
1024_1(
0')
1024_1(
x) →
if(
lt(
x,
10'),
x)
if(
true,
x) →
double(
1024_1(
s(
x)))
if(
false,
x) →
s(
0')
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
10' →
double(
s(
double(
s(
s(
0')))))
Types:
1024' :: 0':s
1024_1 :: 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s
lt :: 0':s → 0':s → true:false
10' :: 0':s
true :: true:false
double :: 0':s → 0':s
s :: 0':s → 0':s
false :: true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
lt, 1024_1, double
They will be analysed ascendingly in the following order:
lt < 1024_1
double < 1024_1
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
+(
1,
n5_0))) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
lt(gen_0':s3_0(0), gen_0':s3_0(+(1, 0))) →RΩ(1)
true
Induction Step:
lt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(1, +(n5_0, 1)))) →RΩ(1)
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
1024' →
1024_1(
0')
1024_1(
x) →
if(
lt(
x,
10'),
x)
if(
true,
x) →
double(
1024_1(
s(
x)))
if(
false,
x) →
s(
0')
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
10' →
double(
s(
double(
s(
s(
0')))))
Types:
1024' :: 0':s
1024_1 :: 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s
lt :: 0':s → 0':s → true:false
10' :: 0':s
true :: true:false
double :: 0':s → 0':s
s :: 0':s → 0':s
false :: true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
double, 1024_1
They will be analysed ascendingly in the following order:
double < 1024_1
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
double(
gen_0':s3_0(
n318_0)) →
gen_0':s3_0(
*(
2,
n318_0)), rt ∈ Ω(1 + n318
0)
Induction Base:
double(gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
double(gen_0':s3_0(+(n318_0, 1))) →RΩ(1)
s(s(double(gen_0':s3_0(n318_0)))) →IH
s(s(gen_0':s3_0(*(2, c319_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
1024' →
1024_1(
0')
1024_1(
x) →
if(
lt(
x,
10'),
x)
if(
true,
x) →
double(
1024_1(
s(
x)))
if(
false,
x) →
s(
0')
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
10' →
double(
s(
double(
s(
s(
0')))))
Types:
1024' :: 0':s
1024_1 :: 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s
lt :: 0':s → 0':s → true:false
10' :: 0':s
true :: true:false
double :: 0':s → 0':s
s :: 0':s → 0':s
false :: true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
double(gen_0':s3_0(n318_0)) → gen_0':s3_0(*(2, n318_0)), rt ∈ Ω(1 + n3180)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
1024_1
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol 1024_1.
(14) Obligation:
Innermost TRS:
Rules:
1024' →
1024_1(
0')
1024_1(
x) →
if(
lt(
x,
10'),
x)
if(
true,
x) →
double(
1024_1(
s(
x)))
if(
false,
x) →
s(
0')
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
10' →
double(
s(
double(
s(
s(
0')))))
Types:
1024' :: 0':s
1024_1 :: 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s
lt :: 0':s → 0':s → true:false
10' :: 0':s
true :: true:false
double :: 0':s → 0':s
s :: 0':s → 0':s
false :: true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
double(gen_0':s3_0(n318_0)) → gen_0':s3_0(*(2, n318_0)), rt ∈ Ω(1 + n3180)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
1024' →
1024_1(
0')
1024_1(
x) →
if(
lt(
x,
10'),
x)
if(
true,
x) →
double(
1024_1(
s(
x)))
if(
false,
x) →
s(
0')
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
10' →
double(
s(
double(
s(
s(
0')))))
Types:
1024' :: 0':s
1024_1 :: 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s
lt :: 0':s → 0':s → true:false
10' :: 0':s
true :: true:false
double :: 0':s → 0':s
s :: 0':s → 0':s
false :: true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
double(gen_0':s3_0(n318_0)) → gen_0':s3_0(*(2, n318_0)), rt ∈ Ω(1 + n3180)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
1024' →
1024_1(
0')
1024_1(
x) →
if(
lt(
x,
10'),
x)
if(
true,
x) →
double(
1024_1(
s(
x)))
if(
false,
x) →
s(
0')
lt(
0',
s(
y)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
double(
0') →
0'double(
s(
x)) →
s(
s(
double(
x)))
10' →
double(
s(
double(
s(
s(
0')))))
Types:
1024' :: 0':s
1024_1 :: 0':s → 0':s
0' :: 0':s
if :: true:false → 0':s → 0':s
lt :: 0':s → 0':s → true:false
10' :: 0':s
true :: true:false
double :: 0':s → 0':s
s :: 0':s → 0':s
false :: true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)